Extensions 1→N→G→Q→1 with N=C102 and Q=C22

Direct product G=NxQ with N=C102 and Q=C22
dρLabelID
C22xC102400C2^2xC10^2400,221

Semidirect products G=N:Q with N=C102 and Q=C22
extensionφ:Q→Aut NdρLabelID
C102:1C22 = D5xC5:D4φ: C22/C1C22 ⊆ Aut C102404C10^2:1C2^2400,179
C102:2C22 = D10:D10φ: C22/C1C22 ⊆ Aut C102204+C10^2:2C2^2400,180
C102:3C22 = C5xD4xD5φ: C22/C1C22 ⊆ Aut C102404C10^2:3C2^2400,185
C102:4C22 = D4xC5:D5φ: C22/C1C22 ⊆ Aut C102100C10^2:4C2^2400,195
C102:5C22 = C22xD52φ: C22/C1C22 ⊆ Aut C10240C10^2:5C2^2400,218
C102:6C22 = D4xC5xC10φ: C22/C2C2 ⊆ Aut C102200C10^2:6C2^2400,202
C102:7C22 = C10xC5:D4φ: C22/C2C2 ⊆ Aut C10240C10^2:7C2^2400,190
C102:8C22 = C2xC52:7D4φ: C22/C2C2 ⊆ Aut C102200C10^2:8C2^2400,200
C102:9C22 = D5xC22xC10φ: C22/C2C2 ⊆ Aut C10280C10^2:9C2^2400,219
C102:10C22 = C23xC5:D5φ: C22/C2C2 ⊆ Aut C102200C10^2:10C2^2400,220

Non-split extensions G=N.Q with N=C102 and Q=C22
extensionφ:Q→Aut NdρLabelID
C102.1C22 = Dic52φ: C22/C1C22 ⊆ Aut C10280C10^2.1C2^2400,71
C102.2C22 = D10:Dic5φ: C22/C1C22 ⊆ Aut C10280C10^2.2C2^2400,72
C102.3C22 = C10.D20φ: C22/C1C22 ⊆ Aut C10240C10^2.3C2^2400,73
C102.4C22 = Dic5:Dic5φ: C22/C1C22 ⊆ Aut C10280C10^2.4C2^2400,74
C102.5C22 = C10.Dic10φ: C22/C1C22 ⊆ Aut C10280C10^2.5C2^2400,75
C102.6C22 = C2xD5xDic5φ: C22/C1C22 ⊆ Aut C10280C10^2.6C2^2400,172
C102.7C22 = Dic5.D10φ: C22/C1C22 ⊆ Aut C102404C10^2.7C2^2400,173
C102.8C22 = D10.4D10φ: C22/C1C22 ⊆ Aut C102404-C10^2.8C2^2400,174
C102.9C22 = C2xDic5:2D5φ: C22/C1C22 ⊆ Aut C10240C10^2.9C2^2400,175
C102.10C22 = C2xC52:2D4φ: C22/C1C22 ⊆ Aut C10280C10^2.10C2^2400,176
C102.11C22 = C2xC5:D20φ: C22/C1C22 ⊆ Aut C10240C10^2.11C2^2400,177
C102.12C22 = C2xC52:2Q8φ: C22/C1C22 ⊆ Aut C10280C10^2.12C2^2400,178
C102.13C22 = C5xD4:2D5φ: C22/C1C22 ⊆ Aut C102404C10^2.13C2^2400,186
C102.14C22 = C20.D10φ: C22/C1C22 ⊆ Aut C102200C10^2.14C2^2400,196
C102.15C22 = C4oD4xC52φ: C22/C2C2 ⊆ Aut C102200C10^2.15C2^2400,204
C102.16C22 = Dic5xC20φ: C22/C2C2 ⊆ Aut C10280C10^2.16C2^2400,83
C102.17C22 = C5xC10.D4φ: C22/C2C2 ⊆ Aut C10280C10^2.17C2^2400,84
C102.18C22 = C5xC4:Dic5φ: C22/C2C2 ⊆ Aut C10280C10^2.18C2^2400,85
C102.19C22 = C5xD10:C4φ: C22/C2C2 ⊆ Aut C10280C10^2.19C2^2400,86
C102.20C22 = C5xC23.D5φ: C22/C2C2 ⊆ Aut C10240C10^2.20C2^2400,91
C102.21C22 = C4xC52:6C4φ: C22/C2C2 ⊆ Aut C102400C10^2.21C2^2400,99
C102.22C22 = C102.22C22φ: C22/C2C2 ⊆ Aut C102400C10^2.22C2^2400,100
C102.23C22 = C20:3Dic5φ: C22/C2C2 ⊆ Aut C102400C10^2.23C2^2400,101
C102.24C22 = C10.11D20φ: C22/C2C2 ⊆ Aut C102200C10^2.24C2^2400,102
C102.25C22 = C102:11C4φ: C22/C2C2 ⊆ Aut C102200C10^2.25C2^2400,107
C102.26C22 = C10xDic10φ: C22/C2C2 ⊆ Aut C10280C10^2.26C2^2400,181
C102.27C22 = D5xC2xC20φ: C22/C2C2 ⊆ Aut C10280C10^2.27C2^2400,182
C102.28C22 = C10xD20φ: C22/C2C2 ⊆ Aut C10280C10^2.28C2^2400,183
C102.29C22 = C5xC4oD20φ: C22/C2C2 ⊆ Aut C102402C10^2.29C2^2400,184
C102.30C22 = Dic5xC2xC10φ: C22/C2C2 ⊆ Aut C10280C10^2.30C2^2400,189
C102.31C22 = C2xC52:4Q8φ: C22/C2C2 ⊆ Aut C102400C10^2.31C2^2400,191
C102.32C22 = C2xC4xC5:D5φ: C22/C2C2 ⊆ Aut C102200C10^2.32C2^2400,192
C102.33C22 = C2xC20:D5φ: C22/C2C2 ⊆ Aut C102200C10^2.33C2^2400,193
C102.34C22 = C20.50D10φ: C22/C2C2 ⊆ Aut C102200C10^2.34C2^2400,194
C102.35C22 = C22xC52:6C4φ: C22/C2C2 ⊆ Aut C102400C10^2.35C2^2400,199
C102.36C22 = C22:C4xC52central extension (φ=1)200C10^2.36C2^2400,109
C102.37C22 = C4:C4xC52central extension (φ=1)400C10^2.37C2^2400,110
C102.38C22 = Q8xC5xC10central extension (φ=1)400C10^2.38C2^2400,203

׿
x
:
Z
F
o
wr
Q
<